Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Denis Barritault

Denis Barritault

University Paris-EstCreteil
France

Title: Will matrix therapy pave the way to cell therapy and regenerative medicine?

Biography

Biography: Denis Barritault

Abstract

Matrix therapy is a newly coined name to emphasis the importance of the extracellular matrix in regenerative medicine. It is a complement to regeneration as cells are never alone but are part of an environment that makes a tissue or an organ. Heparan sulfates (HS) are key elements of the extracellular matrix (ECM), which store and protect various cell communication peptides (CCP). HS play a central role in tissue homeostasis, by modulating the bioavailability of CCP hence controlling the cell migration and differentiation required for healing processes. Tissue injury will lead to destruction of cells and surrounding ECM are destroyed. CCPs synthesized by inflammatory and circulating cells can then promote tissue repair, but with a loss of tissue quality, leaving scars or fibroses. We have engineered biodegradable nano-polymers mimicking the HS. They bind to the structure proteins of the damaged ECM, and to the CCP produced by healthy neighboring cells, thereby restoring the ECM microenvironment and tissue homeostasis. This matrix therapy approach has considerably improved the quality of healing in various animal models with reduction or absence of fibrosis resulting in a real regeneration process. These HS mimetics have therefore been named RGTA, for ReGeneraTing Agents. The RGTA technology has been validated in over 80 published preclinical studies and is now marketed as a human healing agent both for corneal and skin ulcers. RGTA are in development for more tissue injuries including mucosa, tendon, muscle. Altogether these study underline the potential of RGTAs as a new therapeutic class in the field of regenerative medicine, simple safe and exploiting our natural potential without need for exogenous cells supply but can combine with cell therapy to restore cellular microenvironment and favor homing . The future of regenerative medicine lays in a proper adjustment of the microenvironment to optimize cell colonization, expansion, replacement and recovery of the functions.