Valeria Chiono
Politecnico di Torino
Italy
Title: Biomimetic polyurethane scaffolds for a stem cell based therapy in myocardial regeneration
Biography
Biography: Valeria Chiono
Abstract
Scaffolds for myocardial Tissue Engineering (TE) should display biomimetic properties respect to cardiac extracellular matrix (ECM), including elastomeric properties [1]. Cardiac regeneration depends on cardiac progenitor cells (CPCs) as well as the milieu in contact with them. Laminin-1 (LN1), typical of developing heart and over-expressed in pathological heart, promotes CPC proliferation and viability [1]. In this work, a thermoplastic polyurethane (PU) was synthesized from poly(ε-caprolactone) diol (Mn = 2000 Da), 1,4-budandiisocyanate and L-lysine ethyl ester dihydrochloride [2]. Bi-layered scaffolds with 0°/90° lay-down pattern were prepared by additive-manufacturing technique [2]. Functionalisation with LN1 or gelatin (G) was performed in two steps: 1) acrylic acid grafting/polymerization by Argon plasma treatment; 2) carbodiimide-mediated coupling of proteins. Scaffolds with mean fibre diameter of 1525 ïm and mean spacing of 5055 ïm were prepared. FITR-ATR analysis of protein-coated scaffolds showed higher intensity of the absorption bands at 3370 cm-1 (-OH and –NH stretching) and 1650 cm-1 (amide I). Contact angle decreased from 90° for PU to 60-65° after G- or LN1-grafting. XPS analysis confirmed acrylic acid grafting/polymerization and protein conjugation. Scaffolds were degraded in vitro by lipase (0.3 mg/ml) in 3 weeks. CPC proliferation on PU-LN1 scaffolds was higher than on PU and PU-G scaffolds, increasing from 8,18% on day 7 to 11,8% on day 14. LN1-functionalization stimulated CPC differentiation into cardiomyocytes and endothelial cells.