Theme: Scientific Systems Regenerating Medicine

Regenerative Medicine-2015

Renowned Speakers

Regenerative Medicine-2015

The 4th International Conference on Tissue Science & Regenerative Medicine which is going to be held during July 27-29, 2015 at Rome, Italy will bring together world-class personalities working on stem cells, tissue engineering and regenerative medicine to discuss materials-related strategies for disease remediation and tissue repair. Bone tissue engineering, soft tissues, tissue imaging, tissue implant, cartilage and skin defects are a special focus along with applying basic science and engineering principles from diverse areas towards solving clinically relevant biomedical problems. OMICS International Organizes 300+ conferences, 500+workshops and 200+symposiums on Clinical, Medicine, Pharma and Science & Technology every year across USA, Europe, Asia, Middle East, Australia and UK with support from 1000 more scientific societies and Publishes 500 open access journals which contains over 30000 eminent personalities, reputed scientists as editorial board members.

The sucessful conference series that has begun with Tissue Science-2012 has recevied tremendous response and contributed the knowledge of tissue science and regenerative medicine to scientific communtiy.

Tissue engineering is an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ. Currently it has emerged as a rapidly diversifying field with the potential to address the worldwide organ shortage issue and comprises of tissue regeneration and organ replacement. The global tissue engineering and regeneration market reached $17 billion in 2013. This market is expected to grow to nearly $20.8 billion in 2014 and $56.9 billion in 2019, a compound annual growth rate (CAGR) of 22.3%. On the basis of geography, Europe hold the second place in the global market in the field of regenerative medicine & tissue engineering. In Europe countries like UK, France and Germany are possessing good market shares in the field of regenerative medicine and tissue engineering. Spain and Italy are the emerging market trends for tissue engineering in Europe.

For more information, please visit : Regenerative Market Analysis

 

Tissue Regeneration

In the field of biology, regeneration is the progression of renewal, regeneration and growth that makes it possible for genomes, cells, organ regeneration to natural changes or events that cause damage or disturbance. This study is carried out as craniofacial tissue engineering, in-situ tissue regeneration, adipose-derived stem cells for regenerative medicine which is also a breakthrough in cell culture technology. The study is not stopped with the regeneration of tissue where it is further carried out in relation with cell signaling, morphogenetic proteins. Most of the neurological disorders occurred accidental having a scope of recovery by replacement or repair of intervertebral discs repair, spinal fusion and many more advancements. The global market for tissue engineering and regeneration products such as scaffolds, tissue implants, biomimetic materials reached $55.9 billion in 2010 and it is expected to reach $89.7 billion by 2016 at a compounded annual growth rate (CAGR) of 8.4%.  It grows to $135 billion by 2024.

 

Materials and Designs for Tissue Engineering

The developing field of tissue science and regenerative medicine aims to regenerate damaged tissues by combining cells from the body with bioresorbable materials, biodegradable hydrogel, biomimetic materials, nanostructures and nanomaterials, biomaterials and tissue implants which act as templates for tissue regeneration, to guide the growth of new tissue by using with the technologies. The global market for biomaterials, nanostructures and bioresorbable materials are estimated to reach $88.4 billion by 2017 from $44.0 billion in 2012 growing at a CAGR of 15%. Further the biomaterials market estimated to be worth more than 300 billion US Dollars and to be increasing 20% per year.

 

Whole Organ Engineering and Approaches

This interdisciplinary engineering has attracted much attention as a new therapeutic means that may overcome the drawbacks involved in the current artificial organs and organ transplantation that have been also aiming at replacing lost or severely damaged tissues or organs. Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for organ transplantation with soft tissues. Although significant progress has been made in the tissue engineering field, many challenges remain and further development in this area will require ongoing interactions and collaborations among the scientists from multiple disciplines, and in partnership with the regulatory and the funding agencies. As a result of the medical and market potential, there is significant academic and corporate interest in this technology.

 

Stem Cells- Tools to Battle Cancer

The characterization of cancer stem cell is done by identifying the cell within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. This stem cell which acts as precursor for the cancer acts as a tool against it indulging the reconstruction of cancer stem cells, implies as the therapeutic implications and challenging the gaps globally. The global stem cell market will grow from about $5.6 billion in 2013 to nearly $10.6 billion in 2018, registering a compound annual growth rate (CAGR) of 3.6% from 2013 through 2018. The Americas is the largest region of global stem cell market, with a market share of about $2.0 billion in 2013. The region is projected to increase to nearly $3.9 billion by 2018, with a CAGR of 13.9% for the period of 2013 to 2018. Europe is the second largest segment of the global stem cell market and is expected to grow at a CAGR of 13.4% reaching about $2.4 billion by 2018 from nearly $1.4 billion in 2013.

 

Bone and Cartilage Tissue Engineering 

Tissue engineering of musculoskeletal tissues, particularly bone and cartilage, is a rapidly advancing field. In bone, technology has centered on bone graft substitute materials and the development of biodegradable scaffolds. Recently, tissue engineering strategies have included cell and gene therapy. The availability of growth factors and the expanding knowledge base concerning the bone regeneration with modern techniques like recombinant signaling molecules, solid free form fabrication of scaffolds, synthetic cartilage, Electrochemical deposition, spinal fusion and ossification are new generated techniques for tissue-engineering applications. The worldwide market for bone and cartilage repairs strategies is estimated about $300 million. During the last 10/15 years, the scientific community witnessed and reported the appearance of several sources of stem cells with both osteo and chondrogenic potential. Several sessions on tissue engineering like bone tissue engineering meetings, biomaterials meetings, implants meetings, cartilage regeneration symposiums are being conducted on a large scale every year.

 

Scaffolds

Scaffolds are one of the three most important elements constituting the basic concept of regenerative medicine, and are included in the core technology of regenerative medicine. Every day thousands of surgical procedures are performed to replace or repair tissue that has been damaged through disease or trauma. The developing field of tissue engineering (TE) aims to regenerate damaged tissues by combining cells from the body with highly porous scaffold biomaterials, which act as templates for tissue regeneration, to guide the growth of new tissue. Scaffolds has a prominent role in tissue regeneration the designs, fabrication, 3D models, surface ligands and molecular architecture, nanoparticle-cell interactions and porous of the scaffolds are been used in the field in attempts to regenerate different tissues and organs in the body. The world stem cell market was approximately 2.715 billion dollars in 2010, and with a growth rate of 16.8% annually, a market of 6.877 billion dollars will be formed in 2016. From 2017, the expected annual growth rate is 10.6%, which would expand the market to 11.38 billion dollars by 2021. Several scaffolds workshops, bioreactors workshops are being conducted globally.

 

Novel Approaches in Guided Tissue Regeneration

Guided tissue regeneration is defined as procedures attempting to regenerate lost periodontal structures through differential tissue responses. Guided bone regeneration typically refers to ridge augmentation or bone regenerative procedures it typically refers to regeneration of periodontal therapy. The recent advancements and innovations in biomedical and regenerative tissue engineering techniques include the novel approach of guided tissue regeneration and combination of nanotechnology and regenerative medicine.

 

Regeneration and Therapeutics

Regenerative medicine can be defined as a therapeutic intervention which replaces or regenerates human cells, tissues or organs, to restore or establish normal function and deploys small molecule drugs, biologics, medical devices and cell-based therapies. It deals with the different therapeutic uses like stem cells for tissue repair, tissue injury and healing process, cardiac stem cell therapy for regeneration, functional regenerative recovery, effects of aging on tissue repair/regeneration, corneal regeneration & degeneration. The global market is expected to reach $25.5 billion by 2011 and will further grow to $36.1 billion by 2016 at a CAGR of 7.2%. It is expected to reach $65 billion mark by 2024. To enlighten the shine of regenerative medicine several regenerative medicine conferences are conducted globally.

 

Regenerative medicine

Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function. The latest developments in the regenerative medicine research involves advances in cell and gene therapy and stem cell research, molecular therapy, dental and craniofacial regeneration. Regenerative medicines have the unique ability to repair, replace and regenerate tissues and organs, affected due to some injury, disease or due to natural aging process. These medicines are capable of restoring the functionality of cells and tissues. The global regenerative medicine industry market will reach $ 67.6 billion by 2020 from $16.4 billion in 2013, registering a CAGR of 23.2% during forecast period (2014 - 2020). Small molecules and biologics segment holds prominent market share in the overall regenerative medicine technology market and is anticipated to grow at a CAGR of 18.9% during the forecast period. As per the market analysis the research in this felid is highly concentrated in Europe which is acting as a platform to conduct central european conference on regenerative medicine

 

Applications of Tissue Engineering and Regenerative Medicine

The applications of tissue engineering and regenerative medicine are innumerable as they mark the replacement of medication and organ replacement. The applications involve cell tracking and tissue imaging, cell therapy and regenerative medicine, organ harvesting, transport and transplant, the application of nanotechnology in tissue engineering and regenerative medicine and bio banking.

Globally the research statistics are increasing at a vast scale and many universities and companies are conducting events on the subject regenerative medicine conference like tissue implants workshops, endodontics meetings, tissue biomarkers events, tissue repair meetings, regenerative medicine conferences, tissue science conference, regenerative medicine workshop, veterinary regenerative medicine, regenerative medicine symposiums, tissue regeneration conferences, regenerative medicine congress.

To share your views and research, please click here to register for the Conference.

To Collaborate Scientific Professionals around the World

Conference Date July 27-29, 2015
Sponsors & Exhibitors Click here for Sponsorship Opportunities
Speaker Opportunity Closed Day 1 Day 2 Day 3
Poster Opportunity Closed Click Here to View