Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

Nafiseh Baheiraei

Nafiseh Baheiraei

Tarbiat Modares University, Iran

Title: Development and characterization of a bioactive porous collagen/β-tricalcium phosphate graft for bone tissue engineering

Biography

Biography: Nafiseh Baheiraei

Abstract

Statement of the Problem: Bone defects are a fundamental public health issues and are the leading cause of morbidity and disability in elderly patients. Tissue engineering techniques provide a new method of regenerating damaged or diseased bone tissue. The purpose of this study was to develop and characterize collagen (COL) and collagen/beta tricalcium phosphate (COL/βTCP) scaffolds with a βTCP/collagen weight ratio of 4 using a freeze drying method.

Methodology & Theoretical Orientation: Physicochemical and biological characteristics of the samples were evaluated. The capability of the prepared scaffolds for vascularization and differentiation of mouse mesenchymal stem cells (MSCs) were also investigated.

Findings: A microporous structure with large porosity (95-98%) and appropriate pore size (120-200 µm) was observed for prepared samples. COL/βTCP scaffolds had a much higher compressive modulus than pure COL, while remaining porous with obvious flexibility. Apatite formation was confirmed by immersing the composite scaffold in simulated body fluid for 7 days. ALP assay revealed that porous COL/βTCP can effectively activate the differentiation of MSCs into osteoblasts. Composite scaffolds also promoted vascularization with good integration with the surrounding tissue.

Conclusion & Significance: Introduction of βTCP powder into the porous collagen matrix effectively improved the mechanical and biological properties of the collagen scaffolds, thereby making them potential bone substitutes for enhanced bone regeneration in orthopedic and dental applications.